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Abstract

A generalization of the concept of a system of non-holonomic constraints to
fibred manifolds with n-dimensional bases is considered. Motion equations
in both Lagrangian and Hamiltonian settings for systems subjected to such
constraints are investigated. Regularity conditions for the existence of a
non-holonomic Legendre transformation, and the corresponding formulae for
Hamiltonian and momenta are found. In particular, Lagrangian constraints
and semi-holonomic constraints, and simplifications arising in this case are
discussed.

PACS numbers: 02.30.Xx, 02.40.Vh
Mathematics Subject Classification: 35A30, 37J60, 49Q99

1. Introduction

Recently, the geometry of non-holonomic systems in mechanics, inspired by the work of
Chetaev [4], has been intensively studied. Among others, geometric structures connected with
non-holonomic constraints in jet bundles have been described, and constrained systems have
been considered as defined directly on constraint submanifolds (i.e., with ‘eliminated Lagrange
multipliers’). Within this setting, constrained Euler-Lagrange equations and constrained
Hamilton equations have been found, a constraint Legendre transformation has been proposed,
and symmetries of constrained systems have been studied (see, e.g., [2, 3, 6, 8, 13-15, 18-
20, 22-25, 27-29] and references therein). Contrary to this situation, only a few pioneer works
deal with constraints and constrained equations in field theory, i.e., for partial differential
equations (see [21] for vakonomic-type constraints, and [1, 17] for constraints of non-
holonomic type).
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This paper aims to be a contribution to developments of a mathematical formulation of a
‘non-holonomic field theory’. We leave aside a discussion on applications of the theory which
one could possibly search within some problems of field theories or continuum mechanics. In
fact, at the moment, very little is known on this point; even in the case of (classical and higher
order) mechanics there is still a shortage of concrete examples concerned with ‘non-classical’
constraints (e.g., non-linear in velocities or depending on higher derivatives). Furthermore,
the role of vakonomic and non-holonomic constraints in applications in field theory is still far
from being known and well understood (cf [21] for a discussion on this point).

We consider a fibred manifold 7 : ¥ — X withdimX =n anddimY =m +n, ie., m
denotes the fibre dimension, and its 1-jet prolongation J'Y, with local fibred coordinates, is
denoted by (xi, o, y;.’), where 1 < i, j <n,and 1 < o < m. A system of K non-holonomic
constraints is defined to be a submanifold Q of codimension K in J'Y fibred over Y, and
locally is given by a system of K (linearly independent) first-order PDE

FOL YY) =0, 1<a<K, (1.1)

satisfying the rank condition

rank ﬂ =K. (1.2)
8y}’

It turns out that the family of possible non-holonomic constraints for partial differential
equations is richer than that for ordinary differential equations (cf [17]). In particular, there
is an interesting class of the so-called 7 -adapted constraints, which can be viewed as a non-
trivial ‘multi-variable’ generalization of non-holonomic constraints of classical mechanics.
They are locally defined by a system of K = kn first-order partial differential equations in the
normal form,

fj‘.‘Ey;.”_k”—gj(xi,y“,yll,...,yl”’_k)=0, 1<a<k<m, 1<j<n,
(1.3)
satisfying the (additional) rank condition
rank <a—;> = const < m, where (a, j, i) label rows and o label columns. (1.4)
Vi

Remarkably, -adapted constraints need not be Lagrangian (in the sense of [17]) which makes
the results much different from the case of mechanics (where all non-holonomic constraints
are Lagrangian). m-adapted constraints include, among others, constraints important from
the geometric point of view: holonomic constraints (i.e., constraints defined as a fibred
submanifold in Y), and constraints modelled by a distribution or codistribution on Y (in
particular, semi-holonomic constraints) [17].

In this paper, we study in detail geometric properties of m-adapted constraints and the
corresponding constrained systems. We show that constraints of this kind have a fundamental
geometric property (similar to non-holonomic constraints in mechanics): the constraint
manifold Q carries a distribution (a subdistribution of the induced on Q-contact distribution)
called canonical distribution. In general, it need not be completely integrable, and need not be
projectable onto a distribution on the total space Y. With the help of the arising constraint ideal
(i.e., the ideal in the algebra of differential forms generated by the annihilator of the canonical
distribution) we introduce the concept of a constrained Lagrangian system, defined as a
class of differential forms on the constraint submanifold Q. We derive the corresponding
constrained Euler—Lagrange equations, and develop a Hamilton-De Donder theory for
m-adapted constrained systems. We obtain a regularity condition which guarantees that
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the non-holonomic Euler—Lagrange and the non-holonomic Hamilton—De Donder equations
are equivalent. For regular constrained Lagrangian systems we then construct an appropriate
Legendre transformation as a coordinate transformation on the submanifold Q, and find explicit
formulae for constrained momenta. Similarly as in non-holonomic mechanics, it turns out
that a Hamiltonian is rather a class of differential n-forms which contains a closed form if
the constraint ideal is closed, i.e., the constraints are semi-holonomic). Then the Hamiltonian
locally arises from a Hamilton function. Our approach closely follows a geometric formulation
of non-holonomic mechanics and field theory in jet bundles, introduced by the first of us (see
[13, 14, 15, 17]), and our previous work on constrained Hamiltonian mechanics [29].

2. Lagrangian systems on fibred manifolds

In what follows, we shall use standard concepts from the theory of jet bundles and the calculus
of variations on fibred manifolds. For more details, we refer to [9, 10] or [5, 12, 26].

All manifolds and mappings throughout the paper are assumed to be smooth. Summation
over repeated indices is always understood, unless otherwise explicitly stated.

Let # : ¥ — X be a fibred manifold, dim X = n,dimY = m + n. Consider its jet
prolongations m; : J'Y - X, m : J?Y — X, and natural projections 7y ¢ : JY - v, T
J?Y — J'Y and mop : J?Y — Y. We denote by (x, y°), where 1 <i <n,1 <o <m,
local fibred coordinates on ¥, and by (x', y7, y7) and (x, y, y7, y%,), where 1 < j <k <n,
the associated coordinates on J!'Y and J?Y, respectively. We put

wp=dx' Ao AdX", ®j = i/9.i 0. 2.1

A mapping y : U — Y, where U C X is an open set, is called a section of m if
7w oy = idy. We denote by J'y and J?y the first and the second jet prolongation of y,
respectively. Note that J!y (respectively J2y) is a section of m; (respectively 7,). A section
8 of my is called holonomic if § = J'y for a section y of 7.

A vector field & on Yis called w-vertical if Tw -& = 0, and w-projectable if Tm -& = §yom
for a vector field &) on X. Analogous definitions apply for vector fields on J'Y and J2Y with
respect to different projections. A g-form n on J!'Y is called m,-horizontal (respectively
m1,0-horizontal) if ign = O for every m;-vertical (respectively m; o-vertical) vector field £ on
J'Y. nis called contact if J'y*n = 0 for every section y of r. A contact form 7 is called
1-contact if for every vertical vector field & the form i¢ 7 is 771 -horizontal; it is called k-contact,
where 2 < k < ¢, if for every vertical vector field & the form i is (k — 1)-contact. We denote
by 7744(J'Y) the module of g-contact p-forms on J 'Y, and by Q77 (J'Y) its submodule
consisting of m; g-horizontal forms.

Next we denote by /4, p and p; (k > 1) the horizontalization, contactization, and
k-contactization operator, respectively. It is to be stressed that every g-form n on J'Y admits
a unique decomposition into a sum of a horizontal and k-contact forms, 1 < k < g (called the
horizontal, 1-contact, . .., g-contact component of n), as follows [10]:

Ty =hn+ pin+ pan -+ + pyn. (2.2)

To simplify calculations, it is convenient instead of a canonical basis of 1-forms, i.e.

(dxi,dy”,dyj) on J'Y and (dx',dy°, dy;’,dy;’l) on J?Y, to use a basis adapted to the
contact structure, i.e. (dx’, °, dy;’) and (dx', o°, o7, dy;’l), respectively, where

o’ =dy” —y? dx', w] =dy” — y7 dx’ (2.3)

are local canonical contact 1-forms. In such a basis, elements of the module 4 7(J 1Y)
where g > 1, are expressed by means of wedge products containing exactly g of the forms w”
and p — g dx’.
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If fis a function on J!'Y, we have by (2.2) the exterior derivative d f canonically split into
the horizontal and contact component,

my df =d(fomy) =hdf +pdf, (2.4)
with
hdf = gdxj, (2.5

where d/dx/, 1 < j < n, denotes the jth total derivative operator (also called the jth formal
derivative operator),

d a 0 d

— = —— +y7 — 4+ Y% . 2.6
dx/ ox/ i 9y Yij dy? (2.6)
For convenience of notation we also use the ‘cut’ total derivative operators,
d a s 0 d s 0
=— + — 2.7

A axd ey T dwd igys

By a first-order Lagrangian we shall mean a horizontal n-form on J'Y. With a Lagrangian
A there is associated a unique at most 2-contact n-form ®, such that p; d®, is m; g-horizontal.
The n-form @, is called the Poincaré—Cartan form, and the (n + 1)-form

E, = p1dO, (2.8)
is called the Euler—Lagrange form of the Lagrangian A [9]. In fibred coordinates where
A = Lawy, 2.9)
we have
oL
On = Lay+ ——o° Awj, (2.10)
9y;
and
aL d oL
E;, = E;0° A wy, where E, = — — ——. (2.11)
dy®  dx/ 9y
We write
E, = A, + BJ,y}. (2.12)
where obviously
- 02L aL 9%L 02L
B, =———, Ag=— ———— — . (2.13)
ay; 9y¢ aye  9xJdys  ayvayj !

The E, are affine in the variables yl"J ie. A, and Bélv are functions of (xi , V7, y,p ) (the Bé',,
need not be symmetric in the upper indices).
It is known that a section y of 7 is an extremal of A if it satisfies the equation

J! y*i: d®, =0 for every m; — vertical vector field £ on J'y (2.14)

[7,9, 5]. This is the intrinsic form of the Euler—Lagrange equations; in fibred coordinates it
takes the familiar form of a system of m second-order PDEs for components y* = g oy, 1 <

v<m,ofy,
oL _ i oL, J?y =0. (2.15)
dye  dx/ 9y
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3. Hamilton-De Donder equations in a slightly generalized setting

Let A be a Lagrangian on J'Y and ®;, its Poincaré—Cartan n-form. Equation
8% d®; =0 for every m;-vertical vector field & on J ly, 3.1)

is the well-known intrinsic form of Hamilton-De Donder equations [7]. Solutions of (3.1)
are called Hamilton extremals of the Lagrangian A; note that they are sections of the fibred
manifold 7; : J'Y — X. Obviously, if y is an extremal of A then J!y is a Hamilton
extremal. On the other hand, Hamilton—-De Donder equations may posses solutions which are
not holonomic sections of m; (such a section need not correspond to an extremal). However,
if the Lagrangian satisfies the regularity condition

3L
det Avno # 0 (32)
Ay 07

then every solution of the Hamilton—De Donder equations is holonomic, and, consequently,
solutions of the Euler—Lagrange and Hamilton—De Donder equations of A are in bijective
correspondence. In this case, in a neighbourhood of every point in J Y there exists a
coordinate transformation (xi, ¥, 7 ) — (xi, y°, p{,) called Legendre transformation, such
that ®, takes a canonical form

0, = —Hawp + pl dy° A w;, (3.3)

where
. oL .
pl = , H=—-L+plyJ. (3.4)
0y§ !

In Legendre coordinates Hamilton—De Donder equations (3.1) read

d(plos OH 3" 08) OH

(pi‘):__, M:_ (3.5)

ax/ ay° ax/ apl

where the functions on the right-hand side are considered along §.
Let us return to Euler-Lagrange equations (2.14) of A and note that they do not change if
instead of the Poincaré—Cartan (n + 1)-form d®, one takes

o« =dO, +F, (3.6)

where F is any at least 2-contact (n + 1)-form on J'Y. More generally, we have the following
equivalence relation on (n + 1)-forms on J'Y [13]:

o) ~oap if o) — ayis at least 2-contact. 3.7

We denote by [«] the class of «.
The class of d®; can be characterized as follows:

Proposition 3.1.
(1) Every at most 2-contact form o € [d®,] is, in fibred coordinates, expressed as follows:
a=dO; + Fl 0’ A’ Aw; + [T 0% Adw” Awij + £ de” A do” A o (3.8)
(2) Let o' be such that
o —de, € Q2 UY). (3.9)
Then

d/ =0 & o =dO; +F, where F =0. (3.10)
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Proof. The first part of the proposition is a direct consequence of the definition. To prove
(2), it is enough to show that if F' € Q';_]’Z(JIY) satisfies dF = 0 then F = 0. Denote
F = F. 0° A 0’ A w;, where the components F!  are skew-symmetric in the lower indices.
Computing dF we obtain

d'F! OF!
dF = —2Z207 AW’ Awg+ —Z20” A’ Ao’ A w;
dx! ay*
i
+W’;"dy;)/\a)“/\a)"/\a)i+2Féua)"/\dyi”/\a)0. (3.11)
J
Now, we can see that dF = 0 means that F! | =0, i.e., F = 0. O

By the above proposition, the class of forms
o =dO, + F where F is 2-contact and 7} o-horizontal (3.12)

contains a unique closed representative (the form d®;). In what follows, the class (3.12) will
be denoted by [d®, ]y.

Definition 3.2. We call the class [d®; ] the Lagrangiansystem (associated with the Lagrangian
A), and its subclass [d®, ]y the Hamilton—De Donder system of A.

In keeping with [16, 17], if « € [d®,], we can consider the ideal H, in the exterior
algebra on J'Y, generated by n-forms

igot, where £ runs over all 7r;-vertical vector fields on J'Y. (3.13)

H,, is called the Hamiltonian ideal of «. Its integral sections are called Hamilton extremals of
the (n + 1)-form «.
Note the following:

(1) Equations for integral sections of the ideal Hye, are Hamilton—De Donder equations
of A.

(2) Euler—Lagrange equations (2.14) of A can be interpreted as equations for holonomic
integral sections of the Hamiltonian ideal Hge, -

(3) Euler-Lagrange equations of A are equations for holonomic integral sections of any
Hamiltonian ideal H,,, where @ € [d©®,].

(4) Considering different elements « in the class (3.12) provides different equations for
Hamilton extremals (called Hamilton equations of o associated with 1).

Hamilton equations associated with a general (closed) (n + 1)-form « € [d®, ] are studied in
[16]. A key concept in Hamiltonian theory is that of regularity. For Hamilton—-De Donder
systems the geometric meaning of regularity can be expressed as follows (cf [11, 16, 17]):

Definition 3.3. « € [d®, ]y is called regular if a system of generators of H, has the maximal
rank (i.e. equal to m + mn). A Lagrangian h on J'Y is called (De Donder) regular if in the

class [d®, ]y there exists a regular representative.

Theorem 3.4. X is (De Donder) regular if and only if

I*L :
det( —— ] #0 ie. det(B/Y) #0. (3.14)
Ay 0y7
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Moreover, if A is regular then every form a € [d®, ]y is regular. Consequently,

(1) every Hamilton extremal of « is holonomic,

(2) Hamilton equations of a are equivalent to the Euler—Lagrange equations of A,

(3) Hamilton equations of all o (though different) are equivalent, i.e., have the same solutions,
(4) every Hamilton extremal of « is a prolongation of an extremal of X.

Proof. Computing (3.13) explicitly we obtain that for o € [dO; ]y, H, can be generated by
the following system of m + mn differential n-forms,

d’L 9°L
ayedy;  dyvayy

Aywo + (2ng + ) o' Awj+ B, dy] Ao, BY o' Awj, (3.15)

where 1 < o <m,1 <i < n, and the A, and Bf,jv are given by (2.13). This means that
the matrix of generators of H, is the following matrix with m + mn rows and 1 + mn + mn?
columns:
3*L 3L i
— B
dydy;  dyvoy] . (3.16)
0 B, 0

A, 2Fl, +

If H,, is regular, i.e., the above matrix has the maximal rank, then the square matrix (B(i,jv) is
regular. Conversely, if (B:;f;) is regular then the rank of (3.16) is equal to m + mn. Indeed,
since all rows of (Bf,jv) (labelled by (o, i)) are linearly independent, for every fixed i, the
matrix (Bf,";,) with m rows labelled by o, and mn columns labelled by (v, j), has the maximal

rank, m. Consequently, the matrix (Béj,)) with m rows labelled by o and mn? columns labelled
by (i, v, j), appearing in the right upper corner of (3.16), has rank m. This proves that the
corresponding form « is regular, i.e., A is regular. Moreover, we can see that regularity does
not depend on the choice of functions Fy,, i.e., of & € [d®;]y.

The remaining parts of theorem 3.4 now follow easily. From the generators (3.15) of

H, we can see that if the matrix (B[i,ju) is regular then 8*(B£jvw” A j) = 0 means that

8*(w” Awj)=0forallv, j,ie.,

0=(d(y" 08) — (3 08)dx') A, = (% dx’ — (! oS)dx’) A w;
a(y" oé) ; ’ a(y" 0 d)

Hence, every solution of H, is holonomic, proving (1).

If § is a solution of Hamilton equations of « then by (1), § = J!y for a section y of 7.
Hence, for every r;-vertical vector field &, 0 = §*ica = J'y*iza = J'y*ic dO;, i.e., ¥ is an
extremal of A, and we get a bijective correspondence between solutions of the Euler—Lagrange
equations and any associated Hamilton equations of o € [d®; ]y. This means that assertions
(2), (3) and (4) are true. O

By (3.3), (3.4) we get that every o € [d®, ]y has a local canonical form
o =—dH Awy+dpl Ady’ Aw; + F, (3.18)

where F € Q’;,_I’Z(J 1Y). Moreover, if A is regular then the momenta pé are independent,
and (xi, e, p/,) are local coordinates on J'Y. In these coordinates, generators of ,, take the
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form
OH i i dy? J
{5y +2F],y; |wo+2F),dy" Awj —dp) ANwj,
9H i (3.19)
———wy +dy’ Awj,
Ips
and Hamilton equations of « read
d(ps oo IH (3308 9" 08) 9H
L‘.’)z——uF;v 00700 _(yrogy), 20T OH (3.20)
ax/ ay° 0x/ 7 dx/ ap
(where the functions on the right-hand side are considered along §). Since by (3.4)
OH /ops = ¥7, equations (3.20) are apparently equivalent to Hamilton-De Donder

equations (3.5).
Summarizing, we can see that for regular Lagrangians, Hamilton—De Donder equations
are obtained from any (n + 1)-form « € [d©; ]y.

4. Non-holonomic constraints

A non-holonomic constraint in J'Y is defined to be a fibred submanifold Q of 7 ¢, codim
QO = K,where ] < K < mn —1. Denote by t : Q — J'Y the canonical embedding of the
submanifold Q into J'Y.

Throughout this paper, we shall consider a class of non-holonomic constraints in J'Y,
characterized as follows:

Definition 4.1. A non-holonomic constraint Q C J'Y is called m-adapted (of rank i) if it
can be locally defined by a system of kn first-order partial differential equations in normal
form,

f;’Enyk”—gjf(x",y”,yf):O, I1<a<k<m, 1<j<n, @1

such that

ofé
rank <8i{’> =Kk <m, where (a, j,i) label rows and o label columns. “4.2)
Yi

Remark 4.2.

(1) Functions g? above depend on x,1<i €n,y,1 <o < m, and y,1 <5 <
m—k, 1<l <n.

(2) corank Q = kn.

@3) Foralla,b=1,2,...,k,s=1,2,....m —k,andi,j=1,2,...,n

af? ) af? g9
—m{’m = 5,35, f’s = 4.3)
ay; ay; dy;
Taking into account rank condition (4.2) we can see that x > k.
(4) From (4.1) one can see that
af? ag4 )
rank <aija> = rank (— agi 828}) = max = kn,
" % (4.4)

where (a, j) label rows and (o, i) = (s, b, i) label columns,
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the matrix in (4.4) being a (kn x mn) matrix with the (kn x kn) unit submatrix. This means
that, indeed, Q is a fibred submanifold of m; g.

Definition 4.3. Let (V, ) be a fibred chart on Y, (Vy, Y1) the associated chart on J'Y . Let
U C V) be an open set. On U consider the following 1-forms,

i 1 i 1 af]a o m—k+a i 1 3g? ] i m—k+
¢? :f;dx-i_;aqu :(yj —g?)dx _;<ay;¥w3_5jw a)’

1 <a<k, 1<i,lj<n, 4.5)
and set

Cy = annih{qﬁ?i}, Cy = annih{qﬁ?i, dff}. 4.6)
The distribution Cy and Cy on U will be called extended local constraint distribution and local

constraint distribution associated with the constraint Q, respectively.

Apparently, Cy is a subdistribution of Cy. Note that we have another distinguished
subdistribution of Cy/, of constant corank k, annihilated by the following system of linearly
independent 1-forms on U

o . 1off
B = g] = frdx 4= gy
; n dyy
. 10g¢
_ (y;n—km _ gl{J) dxi — _a;glsws +wm7k+a’ 1<a<k. “4.7)
n yi

In what follows, we shall use the following notation,

o° = L*a)”,

L P

. . 1 1 .
ai __ kgai s Qi ~m—k+a
95 _L¢j_ —aJOL o’ + Sja) ,
n \ 9y n

nay;
(4.8)
1 fafe .
gﬁa:t*(f)a:(ﬂqlaj:— i oL wa

It n \ayy

1dg! . 10g°

- __ 8 ° +L—um7k+a — _glq dxf — _iws +dym7k+a’
n dy; n y;

where | <o <m,1 <a<k,1<i,j<n,and we have used that ®* = @*, 1 <5 < m —k.

Proposition 4.4. At the points of Q N U, Cy is a distribution of corank k on Q N U,
annihilated by the forms goji .

Proof. Cy is asubdistribution of the distribution Qy on U, annihilated by the (kn independent)
1-forms d f Jf’. However, Qy has the constraint submanifold Q (precisely Q N U) as one of
the integral submanifolds. This means that along Q N U the vector fields belonging to Cy; are
tangent to Q N U, and are annihilated by the 1-forms L*(ﬁ?i = <pji . O

Now, we shall show that the system of local constraint distributions along the constraint
submanifold Q unites into a global distribution on Q.

Theorem 4.5. Lett: Q — J'Y be the canonical embedding of the submanifold Q into J'Y .
Then local 1-forms goj?i = f‘q&?", 1 <a<k,1<i,j< n,annihilate a distribution of corank
Kk on Q, i.e., a subbundle of the tangent bundle T Q — Q of corank «.

Proof. LetCy,, Cy, be two local constraint distributions defined on open sets U, U, such that
UiNU,N Q # . Denote by (x', y7, y7) and (x", y?, y/7) the associated fibred coordinates
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on Uy and Uy, respectively. If fi = 0 and f "; = 0 are equations of the constraint Q on U,
and U,, respectively, we have

) . ) 18f;1 .
Cy, = annih ¢>;-” =fjf‘dx’+——‘aa) ,dfj’ ,
n dy;
4.9
. ai a [ laf/? / ra ( )
Cy, = annih ¢>’j =f/jdx"+— ,Ua)“,dfj ,
n dy;

and for some functions c% onU;NU,NQ,

df'5(x) = i) dff (x) (4.10)
at each point x € U; N U, N Q. The latter relation means that at these points,

af/.[; _Calilbaylz _ alaflb ayvai/i

= ¢ = ) 4.11
aylr — Payr oy T Payy oy oxr @D
Now,
. .
n<ﬂ/a.i = m*¢/a.i = af/'i ol C?)/('r = Ca.l aflb ol ayv ax” ayla @p
i i ay° P\ \ayy 3y’ dxP dyP
ax" [aff :
1 I - aali b,
= s (ayu ou)a’ =0 (4.12)
p
(with an obvious notation for 6%’},), meaning that on U; N U, N Q the 1-forms <p;?i and go’?i
annihilate the same distribution. (|

Definition 4.6 ([17]). The distribution
C =amih{py, 1 <a <k, 1<i,j<n}, (4.13)

on Q, defined in theorem 4.5 is called a canonical distribution of the constraint Q, and the
1-forms gojqi are called canonical constraint 1-forms. The ideal T in the exterior algebra of
differential forms on Q generated by canonical constraint I-forms is called the constraint
ideal. A pair (Q,T) where Q is a constraint in J'Y and T is its constraint ideal is called a
constraint structure on ;.

Remark 4.7. Due to the rank condition (4.2), in a neighbourhood of every point in Q
there exists a system of « linearly independent annihilating 1-forms for C. Moreover, x of
the contact forms @ can be expressed by means of these constraint forms and the remaining
‘omegas’. Without loss of generality, we may assume that

C = annih{p”, 1 < o <k}, (4.14)
where
R Z Go', 1 <a <k, (4.15)
r=1

for appropriate functions GY. We also have
C = amnih{p?, ¢*, 1 <a <k,1 <a <k —k}, (4.16)

where ¢ are defined in (4.8) and ¢* are the forms above.
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Proposition 4.8. The canonical distribution C is locally spanned by the following independent
vector fields,

xk—k m—k m—«
ac 0 m—«k +o a.r 9 a a,r 9
a=1 r=1 r=1
9 R
C = 4 re 1<r<m-—«, 4.17
ayr ay) ; r m o m—kto Z r aym aom—k+a’ ( )
0 .
—> I<s<m—k, 1<j<n,
By;
where
1 [age ‘X g
re=— (B Y "8 _6e),  1<a<k 1<r<m-—x (4.18)
n \ dy/ Ay
or, equivalently, by
m—k
0 ;0 u 0 d’
dxz=3 X_; zay xﬁéwngrm_m=@O" I<i<n,
¢
, 1<r<m-—«, 4.19)
ay”
0
T I1<ss<m—k, 1< j<n
Byj
Proof. A vector field é on Q,
0 d
— + = , 4.20
§=¢ axl ay" fays ( )
(where summations runover/ = 1,...,n,0 = 1,...,m,and s = 1, ..., m — k) belongs to
the canonical distribution C iff foralla =1, ..., k,anda =1, ...,k — k,
m—k
8gl P'\S‘ m— a a
i :__Z 3y (8" — &)+ 8" — gt =0,
’ 4.21)
l-é(pa — gm—kta m K+Ol Z th Er _ r ) =0.
These conditions give us
m—k m—k
1 ag ag!
—~m—k+a I =S a i .8 1
= = T + &g — — 5 s 5 1 < a < k?
n;?y; (1 o
(4.22)
m—k m—k
gkt _ Z Gggr + (ylm’”“ — Z )gl 1<a<k—k%k
r=1 r=1
Hence,
1 m—«k 8g?‘ k—k Bg?’
—~m—k+a i i o —r
= = — — + ﬁGr [
m—« k—k
a 1 8gta agta o r 1
+<gl_;;<ay;’+28ym K+01G>y1)$’ I<axk, (4.23)
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and we get that a vector field £ on Q belongs to C iff (in notation of (4.18))

m—k Kk—k - m—« 9
xl+Z + <Z agr (m/c+ot ZGa r) )W

r=1 a=1

0
a_
k m—«k — 9 m—k 9
a=1 K J

s=1

t=¢

where E’, & and E'j‘., 1<j,l<n,1<r<m-«k,1<s <m— k, are arbitrary functions.

This means that, indeed, (4.17) (respectively (4.19)) are generators of C. O

Remark 4.9. We call the vector fields Bc/axl and 9./0y" (1 < I <n,1 <r<m—«k)in
(4.17) constraint partial derivative operators, and d/c/dxl (1 <1< n)in(4.19) cut constraint
total derivative operators. For convenience of notation, we also introduce constraint total
derivative operators

m—k

d.
a: Zylas glamkﬂz Zy]laY

d, — 0
= Z lay Z)’,z y @"‘;)’jza_y;’ 1

r=1 s=1

N

(4.25)

and the constraint Euler—Lagrange operator and cut constraint Euler—Lagrange operator,
respectively,
0c d. 0 , c d 9

6 = — - < e = ——=—, I<r<m-«. (4.26)
ay"  dx/ ay; ay"  dx/ By;

Next, instead of a canonical basis (dx’, dy?, dyj) of 1-forms on Q, or a basis (dx’, @, dyji)
adapted to the induced contact structure, it is convenient to work with bases adapted to the
constraint structure, where the canonical constraint 1-forms appear,

(dx', dy", 7, 9%, dy?), (dx', 0", 9%, 9%, dy?), (4.27)
where ]| <i,j<n,1<r<m—-k,1<s<m—-k,1<a<k,andl <o <k —k.

Remark 4.10. As stated above, we consider the canonical distribution C annihilated by the
system of local 1-forms on the constraint manifold Q,

m—K m—k

(pot — "t _ Z Gtrxwr — _yimfl(+a dxi _ Z Gga)r +dym—K+Ol’ 1<a<k—k,
r=1 r=1
m—k

1 0g?
a _ CDm7k+a _ - Lo’ = —o%dx i — 260 d m—k+a

¢ 2wy g Z

m—« K—k 1 aga
= @k Zra r— ;Ww, 1<a<k, (4.28)
a=1 !

where I'f are defined in (4.18).
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We get the following formulae which will be used later:

m—« m—«
d.G¢ ; ; ;
de® = Sl Adx! + ) G¥dy Adx! —dy" T Ady
+ ’"i’:‘ 8CG +’"X’:"”2’:‘ (’xa) A dy? + a constraint form, (4.29)
r,s=1 ay r j !
d. (085 dre 1 9g¢ d.GY :
dpt = S8 gy pqyi = S (28 AL 1 e dGr g
dx/ ay” dx/ nay" ™ dxJ

r=1
m—k
10g/ d
#3 (= Bs) - 98/ dy! A dx’
—\n 9y ay;

( dg  2.GY ) -
_Z m—k+a 0 Nw
r nay ay”

r,s=1

m—k m—k
dgf  IGYY\ , s )
E E W " A dy’ + a constraint form. (4.30)
r=1 s=1 ayf n 8)/ a j !

Definition 4.11 ([17]). A constraint Q in J'Y is called Lagrangian if for a system of constraint
forms ¢, 1 < A < «k, generating the constraint ideal, the p\dep* are horizontal with respect
to the projection onto Y.

In the above definition, p; is the operator of constraint 1-contactization, introduced in [18],
assigning to a form on Q its constraint 1-contact part, defined on Q, natural prolongation of Q,
which is a submanifold in J2Y. We note that if a system of generators satisfies the condition
from definition 4.11 then the same holds for any other system generating the constraint ideal
[17].

Taking into account remark 4.10 we immediately obtain

Theorem 4.12. A m-adapted constraint Q in J'Y is Lagrangian if and only if k = k, and

18 « ag?
81 51 98 =0, 4.31)
n dy; ay;
or, equivalently,
a a a a a a a l)
gi _ g? S gﬁ, gls =0, i#]. (4.32)
dy;  9y; oy, ay;

Conditions (4.31) (respectively (4.32)) mean that equations (4.1) of Q are separable and
affine in the first derivatives, i.e. of the form

VI = R Y7y + B ). (4.33)

Theorem 4.13. Every m-adapted constraint such that k = k, is Lagrangian.
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Proof. Computing the matrix in (4.2) we have

off Rl el de o de 0
ay! ay}" i oy

o af? B S A P 0
oy| oyY' ayp oy

ot | e e a0
ay| ayy' ay; Oy ayy*

T O R ¥ H
9y dyy' ay)  0y3 ayy*

ﬂ ﬂ 8g? ag? ag;l iQa iQa iga
. L — L 2L S sise sise L sise
3y, dy; dy; 9y ay" ! ! !
o i g g %%, :
3y, dym ayy oyr T aymk o

Since the rank of this matrix is equal to £, the functions g} have to satisfy (4.32). Hence Q is
Lagrangian by theorem 4.12. ]

Definition 4.14. A constraint Q in J'Y is called semi-holonomic if the canonical distribution
C of Q is completely integrable.

Formulae in remark 4.10 give us the following equivalent characterizations of semi-
holonomic constraints:

Theorem 4.15. The following conditions are equivalent:

(1) A m-adapted constraint Q in J'Y is semi-holonomic.
(2) The constraint ideal T is closed.
(3) O satisfies k = k (i.e., Q is Lagrangian), and

degf _ degj a

w - o slk)=o (439
or, equivalently,

dgs dugs

Se8i _ Ze0) el(g%) = 0. (4.35)

dx/ dxi

Proof. It is sufficient to note that if x = k, formulae (4.29), (4.30) simplify to

d.g¢ . . o 19e(gY)
do® = ‘_g{dxl Adx/ — gé(gq)ws Adxed — — (g )a)’ AW
dx/ J 2 ay;
dgj R ‘
+ Iyl 4= — 285\ Ayl (4.36)
8ym—k+h n aym—k+bay;



Euler-Lagrange and Hamilton equations for non-holonomic systems in field theory 8729

Remark 4.16. Note that for a Lagrangian 7 -adapted constraint one has
(p]“/' = L*¢f}?i =0, foralli # j,

. ) 1 9o 4.37)
el =Pl = — <d)’”k+“ — i’sa)s) no summation over i, 1 <i < n.
n ay;
Hence, for every fixedi = 1, ..., n, the 1-forms gp?i, 1 < a < k, look like constraint 1-forms

in mechanics (non-holonomic constraints on a fibred manifold over a one-dimensional base,
the x’-axis) (cf, e.g., [13]). Therefore one could think of Lagrangian m-adapted constraints
in field theory as of a ‘multi-time’ non-holonomic mechanics. However, there is in no case
an analogy with the constraint structure in mechanics: one should note that the corank of the
canonical distribution C is k (since only k (not kn) of the forms goi”, et 1 <a <k, are
independent).

5. Constrained Lagrangian systems

Let (Q, 7) be a constraint structure on ;. Since for every g-contact form n on J'Y *n is a
g-contact form on Q, we have the following equivalence relation on (n + 1)-forms on Q,

o Xay if o —oay=F+o, ;.1
where F is an at least 2-contact (n + 1)-form on Q, and ¢ is a constraint (n + 1)-form. We
denote by [[«]] the class of «. If &} ~ « (in the sense of definition (3.7)) then t*o; & (*as.
Remark 5.1. In the following, we shall work with first-order Lagrangian systems whose
Euler-Lagrange equations are non-trivially of the second order. This means that equivalently,

(1) the form d®; is defined on J!'Y and is not projectable onto Y,
(2) Lagrangian A is non-affine in the first derivatives,
3) if ¢ ~ d®, then

a~A;0° ANwy+ B(’;jua)“ A dy}’ A w;, 5.2)
where (B)) is a non-zero matrix, and A,, Bg), are expressed by means of the Lagrangian

in (2.13).

Definition 5.2. Let A be a Lagrangian on J'Y, ®, _its Poincaré—Cartan form. We call the
equivalence class [[t* d®,]] the constrained system associated with A and the constraint Q.
Every element of [[t* d®, ]] of the form

FdOy +¢, el (5.3)

will be called constrained Poincaré—Cartan (n + 1)-form of A.

We note that a general element of the class [[(* d®, ]] is of the form
@ =1dO, + F + ¢, 5.4
where F is at least 2-contact and ¢ € 7.

For a Lagrangian A = Lwy we set
- ‘ oL 4 oL

LZLO[, Zé:WOL’ ZKJI:WOL’ (55)
J J
where l <o <k —k,1 <a <k,and
m—k L
Oy = Loy + —w" Aw;. 5.6
A8 0 ;ay; J ( )

Keeping the notation of section 4, we have
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Proposition 5.3.

F0; = Op) + Z C,ja)’ A wj + a constraint form, (5.7)
r=1
where
. _ . _. . 099
¢l =LiG*+Li (res) — 250 ) (5.8)
8yj

If Q is Lagrangian then 1*®, — O, € I.
If Q is semi-holonomic then also * d®; — dO,; € I.

Remark 5.4. To justify correspondence with the formulae in paper [17], it is useful to
compute the explicit form of some operators from [17] for our case of & -adapted constraints.
In this way one obtains the following relations,

ag) aj aglj ag;l
C = G)6;, C., =T78; — , (5.9
ay;
hence (5.8) becomes
ol =Lic/+Lic = > Licl, (5.10)
A={a,a}
where summationrunsovera = 1, ...,k —kanda = 1, ..., k. Similarly, for the C-modified
Euler-Lagrange operator introduced in [17], we simply obtain u, = &,.
Proof of proposition 5.3.
m-—K L
0, =Lag+ ) (a—ot>a) Awj+LIo" ™ Awj+ Lid" ™" A w;
r=1 J
= Loy + Z ((— o L) +LIG* +L£I‘f) o' Awj
| I
<L1+LJ W)@ Aw;j+ Lig" A w;. (5.11)
From (* dL = dL we obtain the relation
- k
oL oL _. 9g¢
= oY LB i<s<m—k (5.12)
dyj 0 purilA
Hence,
m-—K
oL ad - .
Q) = Lw0+Z (3 aagl LéFf+L{xG‘;‘> " AN W;j
r=1 y/ yj
1 ag!
(L/ + LI~ anf%)gp“/\w]+L/g0 Aw;j
i (e 08 Zia) oy .
= Oy + Z L, |T}8 — 8_y’ +L!G} | " A w; + a constraint form. (5.13)
= J

If O is Lagrangian, we get using theorem 4.12 that ¢! = 0, hence *®; — O, € T.
If Q is semi-holonomic then, moreover, dg® € Z, which means that (*d®, — dO;, =
ALl A " Awj+ Lide* Awj € T. O
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Now, we get the following fibred chart expressions for a constrained system:

Theorem 5.5. Every element of [[t*d®,]] takes the form

m—k
a~* ZAa) /\a)0+ZBma) /\dy]/\a)l
s=1 t,s=1
m—k m—k
ZAa) /\a)o+ZZB”a) /\dy NOTR (5.14)
r=1 s=1
where
] Lagl (. 19g5\ digf
A°=<A + Am—ira— ar (B;m k+b+Bm k+a,m— k+bn8y ﬁ ot, l<s<m-—k,
L o 19g4 gl 19g5 agy
B;ﬁ = (Btli +Brr{ k+a,s ay: +B;,m—k+u 8}’; +B:n k+a,m— k+bn 8yp 8))] oL,
I<t,s<m—k 1<i,j<n, (5.15)

and
Ar = A_r + A_m,,H_O[G(:

o a il il o
A + Am K+(XGr + Am—kMFr + (Br,m—k+b + Bm—K+a,m—k+bGr

d.g/

+ B
dxi

m—k+a,m—k+b

F“) )oc, 1<r<m-—«,

BY =B +B)

m—k+a,s

G()t

m—k+a,s” r

= (B” + B} 1a,G*+ B re

+ (B! B! G + B'! r s
+ (B ks + —cra,m—k+bOr T P _vam—kab r)ay; oL,
J

I<r<m—«, 1<s<m—k, 1<i,j<n. (5.16)
Equivalently, in terms of a Lagrangian A = Lawy,
- - . d’LJ
A, =e/(L) — Lje(g9) —Cl =4 T 1<r<m—x«,

27 a 4
B UL o P8 owdLi
dy;ay; ayioyr P dy;
I1I<r<m—«, 1<s<m—k, 1<i,j<n. (5.17)

Proof. First, let us prove (5.14), (5.15). With (5.2), (5.1) and (4.28) we have

a ~ (" do,
m—k k
(Ag 0 ) A awp + Z(Am ki © D" A g
s=1 a=1
m—k m—k

(B,ﬁ o)’ A dyj A + Z o —kta.s © 1) @" kA dy; A w;
t,s=1 s=1
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J m—k+a b
Z o —k+a © a) A dgs A wi + (Bm Ktaum— k+bot) Ndg; A w;

(A © L) + (Am k+a © L)

5
L
A~
&
'\<
= |
~
8@:
>
S
(=}

m—k —k
1 aga d/gb ) 8gb
+ (B, ket m— k+bOL)Z;_pwt/\ ciCT;dxj +Z aygdyj A w;,

t=1

hence

bl

a %m_ (Asoc)+(Am,k+aoc)l%+(B” jra O 1)~
1 n dy; Sim—kra dx!

R

10g5d gl
i PR
(B:n k+a,m—k+b © ‘)_ f — o' Ay

n dyj dx’
ij 19g; i ag/
+ Z té Brr{7k+a,s o L) o + (Btl,lm—kﬂz © L) s
f5=1 ( ndy, dy;
10g5 dg? ‘
B! ot)——L 2L ) 0! AdyS A w;. 5.18
( m—k+a,m—k+b )n ay ayj yj ( )

This gives us formulae (5.15). Formulae (5.16) now follow by expressing the o™ *** by

means of the constraint forms ¢ according to (4.28).
Next, using proposition 5.3, and the notation introduced so far, we obtain

ar [*d("))\ = dl*@))L
~ dOp; +dC A @ A w; — Cldy! A wyp

1 ag! _.
(L’ +L’ L) do® A w; + L}, dp” A w;

amK‘HX
o.L d. oL dcl\ . oL
yr 7oy i

02L ac! :
— oty | @ Ady; Awr = Cldyl A wo
dy;oy; 9y |

- =1 dgf
+ (L; +L;—%> <—dy;"_'(+°‘ A g+ Gy A wy
n dy,

/ o o

C r r r r s
—Fw Awy+ " Adyl A w;
dx! ay; / '

i acglq d,rF;l 1 ag;l d,rG? r
—L — — — + PR w N Wy
ay’ dx'  ndy dx!
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—. (0g! 10g! ;i
— L 2B 2285 ) 4yt n g
dy; ndy

aTe 1 ag" 9G®

- L) <8yj - 3yl’"_"+°‘ ay_j ) dy‘; NN
= A0 /\wO+B££a)r /\dy‘; A w; (5.19)
(summationover 1 <r <m —«x and 1 < s < m — k), with
_ ) _. _
B = — "L +LP o) —G“BLEY — a8t — %8, oLa
"o ayjay; o “ayfay; T ay; "9y ) 9y
_ ) _
__ 0L L Y8 owdL (5.20)
dyfay; “ayjay; P ay; '

_ 9L d oL _.[0g% dre\ _.dG* dcl
Ar= C L]( g]_cr>+chr_c

9y dxiayr  “\ay  duJ Cdxi  dxd

9L d oL Lf<8cg?—i%>+ii d, (Faa!‘—%>+ii d.G¢  d.cl

T aiay T 1 AT

dyr  dxi 3yl

= - _odeh A (L cA
e/(L) — Lje; (§) + Liy - — (L4C)

4 dxi dxJ
. d.L
o ’ Ai “c™ A
=& (L) — L} (¢5) —C R (5.21)
as desired. O
Corollary 5.6.
(1) If Q is Lagrangian then
o~ (8/ (L) - Li¢ (gq))a)’ A wy — 82—La)’ Ady! A w;. (5.22)
r a-r J 8yjaylr J
(2) If Q is semi-holonomic then
-
a~e (D)o ANwy— ———o" Ady} A w;. (5.23)
dy;ay; !
Proof. From theorem 4.12 we get that for a Lagrangian constraint Cf‘ji = 0 and
82g7 / dy;dy; = 0. If Q is semi-holonomic then by theorem 4.15 also el (g?) =0. O

Definition 5.7. Let A be a Lagrangian, Q a m-adapted constraint on J'Y, and [[1* d®,]]
the corresponding constrained system. A (local) sectiony : X — Y is called a constrained
extremal of A if J'y is an integral section of the canonical distribution C, and

J'y*ie*d®, =0 for every m;-vertical vector field & € C. (5.24)

Equations (5.24) are called constrained Euler—Lagrange equations.

Note that instead of (5.24) we can equivalently write
le*ig& =0 for every m-vertical vector field § € C, (5.25)

where @ is any element of [[«* d®,]].
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By theorem 5.5, the constrained Euler-Lagrange equations in fibred coordinates take the
form

. d.L’
<8r(L) - L,Jlb"r(g?) - ijﬁ) oJ?’y =0, 1<r<m-—c«. (5.26)
For Lagrangian constraints we have
(e-(L) — Ljer(g9)) o Sy =0, 1<r<m—«. (5.27)
For semi-holonomic constraints we have
e (L) o J?y =0, 1<r<m-—c«. (5.28)

Remark 5.8. We denote

N 1<r<m-—«, (5.29)

ek d.L’
E(L. L)) = A, + ) Bily}, = e(L) — Lie,(g4) — CA =4

s=1
and call this operator the constraint Euler—Lagrange operator. We can see that for
general (non-integrable) constrained systems functions (5.29) generalizing the Euler-Lagrange
expressions depend upon the ‘constrained Lagrangian’ L = L o ¢ and other xn functions L,
(which cannot be obtained by means of L). In this way, we can expect that a ‘constrained
variational principle’ will (similarly as in mechanics) involve not merely a single function
but rather 1 + kn functions (more precisely, a differential form with 1 + kn components)
(cf [15, 28]

6. Constrained Hamilton-De Donder equations, regularity of constrained systems

Let A be a Lagrangian, Q a mw-adapted constraint on J'Y. Consider the constrained system
([* dOy]].

Definition 6.1. For @ € [[(*d®,]] we consider the ideal Hg in the exterior algebra on Q,
generated by n-forms
igd, where & runs over all 7;-vertical vector fields on Q belonging to C. 6.1)

Hga will be called the constrained Hamiltonian ideal of &. (Local) sections § : X — Q which
are integral sections of Hg and the constraint ideal I will be called constrained Hamilton
extremals of the (n + 1)-form &. Equations for constrained Hamilton extremals of &, i.e.,

§*pt =0, 8%iga@ =0 for every m;-vertical vector field & € C, (6.2)

will be called constrained Hamilton equations.

Note that

(1) Constrained Hamilton equations (6.2) do not depend on the choice of a constraint form ¢
in (5.3).

(2) Constrained Euler-Lagrange equations (5.24) are equations for holonomic integral
sections of any Hamiltonian ideal Hy, where @ € [[t* d®,]].

(3) Considering different classes

& mod 7 (6.3)

provides different constrained Hamilton equations. For the elements of & mod Z the
constrained Hamilton equations are the same.
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Denote by [[¢* d®, ]]y the class of forms
@ =1"dO; + F +¢, where F is 2-contact and 7 -horizontal, and ¢ € . (6.4)

Definition 6.2. The class [[(*d®;]]ly will be called the constrained Hamilton—-De Donder
system of A. Constrained Hamilton equations of a € [[*d®,]ly will be called
constrained Hamilton—De Donder equations.

Similarly as in section 3 we can introduce the concept of regularity for constrained
Hamilton—De Donder systems:

Definition 6.3. An (n + 1)-form & € [[t*d®,]]y is called regular if a system of generators of
Hg has the maximal rank (i.e., equal to m — k + (m — k)n). A Lagrangian constrained system
on Q is called De Donder regular if in the class [[t*d®, ]]y there exists a regular representative.

Theorem 6.4. The constrained system [[*d®,]] is De Donder regular if and only if one of
the following equivalent conditions holds,

rank(BY) = max = (m — «)n, (6.5)
2L . 9%l ALY

rank — L & +CA AN — (m —i)n, (6.6)
dy; 0y; ayfay; " 9y;

rank (1‘3;‘{; + B:’,{_K+Q.SG;') = (m —)n, 6.7)

with B,’ﬁ, 1 < t,s <k, defined by (5.15).
If [[1*d®,]] is De Donder regular then every form a € [[(*d®,]ly is regular.

Consequently,

(1) every constrained Hamilton extremal of & is holonomic,

(2) constrained Hamilton equations of & are equivalent to the constrained Euler—Lagrange
equations,

(3) constrained Hamilton equations of all & (though different) are equivalent, i.e., have the
same solutions,

(4) every constrained Hamilton extremal of & is a prolongation of a constrained extremal.

Proof. First note that for every m; g-horizontal 2-contact form F on Q one has

—K
F=F a°AN&d"Aw; = Z Féra)" A ®" A w; +aconstraint form.  (6.8)
q,r=1
Ifa € [[t*dO®,]]y, we have
a= A0 Aawy+ F;rwq Ao Aw;+ I?;{w’ A dy‘; Aw; + @, (6.9)
where A, and B}/ are given by (5.16) or (5.17), Fj, = —F} ,and¢ € T. Computing generators
(6.1) of Hs we obtain the following system of m — x + (m — k)n differential n-forms:
A,w0+2l~7riqwq A w; +Bf;dy‘; A w;, B;{w’ A ;. (6.10)
Hence, the matrix of generators of Hg is the following matrix with m — « + (m — k)n rows
and 1 + (m — «)n + (m — k)n? columns:

A, 2F BY
<0 B,.;‘f o > (6.11)
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If Hy is regular, i.e., the above matrix has the maximal rank, then the matrix (B;{) has the
maximal rank, i.e. equal to (m — k)n. Conversely, if rank(Bﬁﬁ) = max = (m — k)n then the
rank of (6.11) is maximal. Indeed, since all columns of (B;{) (labelled by (r, i)) are linearly
independent, for every fixed i the matrix (B;é) with m — k columns labelled by r, and (m —k)n
rows labelled by (s, j), has the maximal rank, m — x. Consequently, the matrix (E;ﬁ) with
m — k rows labelled by r and (m — k)n* columns labelled by (i, s, j), appearing in the right
upper corner of (6.11), has rank m — k. This proves that the corresponding form & is regular.
Moreover, we can see that regularity does not depend on the choice of functions F gr, i.e., of
& mod 7 in the class [[t*d®;]]y.

Let us prove (1)—(4). Assume that § is a local section of 0 — X annihilating all the
forms (6.10). If rank B;} = (m — «)n then 8*(Byiw" A w;) = 0 means that §*(o" A @;) =0
forallr,i,i.e.,

. o0(y" od . .
0= (d(y’ 08) — (y; o 8) dx/) ANw; = (%dx’ — (y; o S)dxf> A w;
x
0(y" o 0(y" o
= L(?)—(yi’oé) wy & y{oé:(yi?), 1<r<m—«. (6.12)
ax! ax!

The condition that § is also an integral section of C then means that 8*¢A =0forall A, i.e.,
8*wm—K+a — O, S*U)m_k+u — 0’ (613)

proving that every solution of Hg, which is an integral section of C, is holonomic (and, indeed,
satisfies the equations of constraints).

If § is a solution of constrained Hamilton equations of & then by (1), § = J'y for a
section y of . Hence, for every m-vertical vector field § € C,0 = 6% = le*igéz =
J ly*igt* d®,, ie., y is a constrained extremal, and we get a bijective correspondence
between solutions of the constrained Euler-Lagrange equations and any associated constrained
Hamilton—De Donder equations. ]

Corollary 6.5. If Q is a Lagrangian constraint, or, if Q is a semi-holonomic constraint then
the regularity conditions (6.5)—(6.7) read

. 2L
det(BY) = —det | ——— ) #0. (6.14)
dy;0y;

7. Non-holonomic Legendre transformation

Theorem 7.1.  Consider a Lagrangian A and a mw-adapted constraint Q C J'Y. Let
[[c*d®,]1]y be the related constrained Hamilton—De Donder system. Let x € Q be a point.
Suppose that in a neighbourhood of x,

9B/ oB!
ay, a 8y‘;’

I<r<m—«, 1<s,t<m—k. (7.1

Then there exists a neighbourhood U C Q of x, and, on U, functions P!, and a n-form n, such
that the class [[t*dO; 1]y has a representative of the form

&:nAwO+dPriAdy’/\w,-. (7.2)

If, moreover, the constrained system [[1*d®,]] is De Donder regular then the map

(xf, ¥, 0, ) > (xP, ¥, PE ") is a coordinate transformation on U.

i
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Proof. Condition (7.1) guarantees that in a neighbourhood U C Q of x there are functions P/
such that

=i dP!

B =-21 (73)

Hence for elements of the class [[t* d®;]]y we obtain using theorem 5.5 and (6.4)

i
r

@~ 15 dO, ~ A, 0" A wy +

aysdyj/\a) A w;

J

o
P

" Awy+dP A0 Aw; — d‘jrdx’/\w’/\wi

X

2

Aw
< )dy Aa)o—ydP’Aa)0+dP’Ady A w;

. dg_P; d P, aP! ;
~ A,+ﬁ—yl oy dy" Awo — yf oy Ydyl/\a)o+dP Ady" A w;.

In this way, we have obtained a representative

- d.P q 9 P’ LOP!
A+ =L —yI—L)dy Awy— yf dy$ /\a)0+dP’/\dy A w;. (7.4)
dxi ay” ay; J
Denote
&:n/\wo+dPri/\dyr/\wi, (7.5)
with
n = f;dx/ +5,.dy" +7/dy}, (7.6)

where 7j;, 1 < j < n, are arbitrary functions on U, and

’ i m—K i
d.pr g 9Py

= A+~ : , 1<r<m—«,
n A - i 3y
” (71.7)

_ P! )

j‘_”av’ I<s<m—k 1<j<n.
Finally, by (7.3), the regularity condition (6.5) (which means that @ is De Donder
regular) coincides with the regularity condition for the map (x v, vl vt “"‘) —
( Pl, m— K+a) -

Remark 7.2. With the help of (5.17) one can rewrite the integrability condition (7.1) in terms
of a Lagrangian and the constraint functions as follows:

gLy d*gy  Ch 9Lh _ aLL 9°gs  ACh IL:
dy; dyidy; Ay 9y; ays dyjdy;  ay} Ay

(7.8)

Let us find explicit formulae for the functions Pri in (7.3).

Proposition 7.3. Let x € U, and consider a mapping x : [0, 1] x W — W defined by

(u,xi, 7, yj) — (xi, 7, uy“;-), (7.9)
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where W C U C Q is an appropriate neighbourhood of x. Then for arbitrary functions
Yi(xd, yY) (respectively Yi(x/, y*)), 1 <r <m —«, 1 <i < n, the functions

1
P :—y‘;/(; (B o x)du+yl(x!, y")

9L oL” 0%l -
= +y3 CAI_ZA _ [P P du+v!, 1<r<m-«, 1<i<n,
oy 7 /0 < 7y T e gysayr ) O v 1S h

(7.10)

are solutions of (7.3).

Proof. Integrability condition (7.1) for the B ensures that in a neighbourhood of every point
in U one can find solutions of (7.3) by the Poincaré lemma. Put

1
P! =—y_;/ (B o x)du+1!, (7.11)
0

where the ¥/ do not depend on the y;- Then, indeed, with the help of (7.1),

P} gy ' (0B ! . l
Wj:—/o (B/Sox)du—yl’/() (ayj’ox)udu:—/o d(u(B o x)) = —BY,

as desired.
Using formula (5.17), equation (7.11) takes the form

1 27 R4 2,a
, 3L 9Lh _ 9 .
Y e Lo P P
o \0y;dy; ay; dy;0y]
aL oL” 0%l -
= r+y;/ e L’ Sg"r o xdu + !, (7.12)
ay; 0 ay; dy;0y;
1 7 7 u=1
aL dL aL
d
~/(‘) (aylr OX) |:8 ; X:|140 a y)
d 9°L
:/ ( >du—y] 79X du.
0 3)’, o \9y;0y

This completes the proof. O

since

Definition 7.4. The form & (7.2) will be called the canonical representative of the constrained
Hamilton—-De Donder system [[¢* d®;]]y.

Functions P! (7.10) will be called constraint momenta, and the local coordinate
transformation (x', y°, yr, y"~***) — (x',y%, P!, y"™**) on Q the constraint Legendre
transformation. (Any) I-form nin (7.2) (gzven by (7. 6) (7.7)) will be called energy 1-form.

For the constrained Hamilton—De Donder system [[:* d®; ]]y we have a family of energy
1-forms n + ¢ where n are given by (7.6), (7.7) and ¢ runs over constraint 1-forms in Z. In
general, energy 1-form need not be closed.

To compute constrained Hamilton-De Donder equations in constraint Legendre
coordinates we have to express in these coordinates the canonical representative &. From
(7.5) it is clear that it is sufficient to transform 7. Let us denote by

n —r)jdx +n,dy” +nqu’ +17m Kmdy’” ot (7.13)
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the chart expression of 7 in constraint Legendre coordinates. We have

j r q d/CPr; j 80Pr; 8Pq m—k+a
n ~ n;jdx’ +n,.dy" +n; T dx +8—y’w 8Sd +nm K+ady

JP 3P & ;0P &
=\mi+ni 7 n,a,yj X+ nr+n,a, y

aPl d q ap‘; J d m— K+a
+ e
nz a r y] N ay;n—/cﬂx Mim—k+a y
Comparing with (7.6) and (7.7) we can see that

P dp 0. P!
ﬁ,.:n,+r)?cq:Ar+ cr_y;ch
ay” dx! ay”
_ S0P 0P,
77, = 771 8)’j )’, 8yj (7.14)
) o , 0P
Mn—k+a = ’7, W T Mn—iera = Y W
Now,
q q aP‘; : q q(,J Jom—k+a
(] +yi)8y, =0, e, nf =—yl(x/,y", P/, y[™r), (7.15)
J
since the matrix (8 P} /9y}) is regular. Using the above relation we obtain
OB ar
nr =0y + y, =A + b Min—rcre = 0, (7.16)
ay” dx!

(considered as functions in constraint Legendre coordinates).

Theorem 7.5.  Constrained Hamilton-De Donder equation (6.2) in constraint Legendre
coordinates takes, for every canonical representative & + ¢ where ¢ € I, the form
(P os Ay 08
(rg.):n,.o& ())7?):—17{08, 1<r<m-—«, 1<i<n,
ox! ax!
(7.17)

together with (6.13).

Proof. Taking into account (7.16), it is sufficient to compute the condition §*iz@ = 0 for &
(7.2) with

n=n; dx/ +n, dy" + ) dpP!, (7.18)
and the vector fields 9./dy" and 9/9P' belonging to C. This, however, leads to
equations (7.17). U

Remark 7.6. If&@’ € [[1*d®,]ly, @ = a+F+gis any other representative, the corresponding
constrained Hamilton—De Donder equations take the canonical form

i q
W =, 08+2(F., 05) (W — (5! 08)),
ay” 08)

oxi
Due to (7.15) equations (7.19) are equivalent to (7.17), as expected.

(7.19)
—1; 08.



8740 O Krupkové and P Volny

Remark 7.7. It is interesting that the canonical representative of the constrained Hamilton—
De Donder equations is not a constrained Poincaré—Cartan (n+1)-form (as probably one might
expect), but rather the form & (7.2).

Taking into account results on Lagrangian and semi-holonomic constraints, we easily
conclude the following:

Proposition 7.8. For Lagrangian constraints and semi-holonomic constraints the integrability
condition (7.1) is satisfied identically. Constraint momenta are given simply by formula

P}:aa—yli;, 1<r<k, 1<i<n. (7.20)
The regularity condition takes the form
det (82—1_‘) #0, (7.21)
dy;9y;

and the constraint Legendre transformation is a local map (xi, v, y; ) — (xi, y°, P! ) on the
constraint Q. Moreover, if the constraint is semi-holonomic then the family of energy 1-forms
n mod Z contains a closed 1-form equal to —d H, where

H=-L+Py. (7.22)

Proof. The only non-trivial part of the proof is to show that for a semi-holonomic constraint
—dH — n € Z. If Q is semi-holonomic then (* d®, = d®,:; up to a constraint (n + 1)-form,
and we get for every representative & € [[(*d©®,]]y,

s

_ L _ A ,
a~"dO, ~dO,, =d (La)o+ 3 108 Aa)j) = —dH Awy+dP] Ady* Aw;. (7.23)
J

Hence —dH A wy &~ 1 A wp, meaning that among energy 1-forms one has n = —dH. |

8. Illustrative examples

Example 8.1.  On the fibred manifold 7 : R* x R> — R? with canonical coordinates
(x!, x2, y1 s y2), consider a Lagrange function

L =yiy; + 7. 8.1)
L gives rise to a first-order Lagrangian system represented by the 3-form o ~ d©;,
o =A,0° Adx' Adx? + BI o Ady! Awj, (8.2)
where by (2.13), A, = 0,0 =1, 2, and
o 0 0 -1
" 0 o0 -1 0
B=1lo _—1 0 o 8.3)
-1 0 0 O

Euler—Lagrange equations take the form

82y1 32y2
_o. —o. 8.4
ox1ox2 ox1ox2 8.4)
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Lagrangian (8.1) is De Donder regular, since det(Bf,jV) # 0 (cf theorem 3.4). Legendre
transformation is a diffeomorphism

(L oy v oyt ) = (L a2yl % e pa pi i), (8.5)
where

pi=¥,  m=w.  pPi=y. P=y (8.6)
For the Hamiltonian we obtain

H = pip; + pypi. (8.7)
and Hamilton—De Donder equations (3.5) in Legendre coordinates take the form

dp;  dpi ', 0

_1+—2:O, —lzpz, _1=p1

oxt  ox ox ax (8.8)

op; 3 _ oyt oy> _

ax!  axz ax2 _ Pv ax2 _ PI

Now, we consider a w-adapted constraint in J'(R* x R?), defined by two constraint
functions

fl=yi—g =y - f=y—8 =y (8.9)
i.e., k = 1. This constraint satisfies the rank condition
-1 1
rank (ﬂ) = rank 0 0 =1, (8.10)
ay; 0 0
-1 1

where (a, j, i) label rows and (o) label columns. This means that k = k = 1, and by
theorem 4.13 the constraint is Lagrangian.
We obtain one constraint form annihilating the canonical distribution C; by (4.8) it reads

ol = —dy' +dy>. (8.11)

Equivalently, the canonical distribution C is spanned by the following independent vector
fields:

0c 0 Oc ol 0c 0 a ol ol
= —, = —, = —+—, —, —. (8.12)
ox!  ox! 0x2  0x2 oyl oyl 9y? ay| dy,
Let us compute the constrained system. By theorem 5.5 we get
&= Ao Adx' Adx?+ Y B! Ady) Aw;, (8.13)
i,j=12
where
_ =i 0o -2
A =0, B} = <_2 0 ) (8.14)
Hence, the constrained Euler—Lagrange equation is one second-order PDE
aZyl
——— =0. 8.15
dx!19x2 (8.13)

We can see that in this simple case the constrained Euler—Lagrange equation coincides with
the (usual) Euler—Lagrange equation of the constrained Lagrange function

L=Lot=2yy,. (8.16)
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Since det(Bﬁ) # 0, the constrained system is regular according to corollary 6.5, and
the integrability condition (7.1) is satisfied. This means that we can find constraint Legendre
transformation and express constrained Hamilton—De Donder equations in the canonical form.
We obtain constraint momenta

Pl =2y, P} =2y, (8.17)
and energy 1-forms

n=mndx'+ndx* - 1P2dP' — 1P'dP} modZ. (8.18)
The class of energy 1-forms obviously contains a closed form, n = —dH, with

H=1P'PL (8.19)

Constrained Hamilton—De Donder equations consist of five first-order PDEs, including three
field equations (for a field on the constraint submanifold)

aPl 9P} ayl 1, a1,

o tae =0 ga 2 ga T (8:20
and two equations of the constraint:

ay?  ay! ay?  dy! )

it R el vl (82D

Example 8.2. We shall give an example of a singular Lagrangian regularized by a -adapted
constraint.

Consider the fibred manifold 7 : R* x R* — R* with canonical coordinates ', y7),1 <
i,0 < 4, and a first-order Lagrangian

o\2 2 2
L = 5 Z (yj) — (y13) — (yi) . (8.22)
0,j
In this case A, = 0, and the matrix B is singular (B is a diagonal matrix with two zero rows).
Euler—Lagrange equations take the form
32 1 82 1 82 1 82 1
y + y + y + y _
@xH?  (9xH)?  (9x3)?  (9xH)?
32 2 82 2 82 2 82 2
y + y + y + Yy o_
@xH?  (9xH)?  (9x3)?  (9xH)?
82 3 82 3 82 3
y y + Yy o_ 0.
@x)?%  (0x3)  (9xH)?
82y4 82y4 82y4

@x2  0x)? @)

Consider a constraint in J' (R* x R*) given by the following constraint functions:

’

)

(8.23)

1 4 1 4 3)2 2 1 3
fi =y —& =)’1_(y1) — Y2 = Y23,

=Y =g =Y =¥y — iy — %
fi=yi— g =)y
1 4 1 4
4 = Y4 — 84 = s
This is a w-adapted constraint of rank x = 3 (the rank of the matrix in (4.2) is equal to 3),
and k = 1. By theorem 4.13 this constraint is not Lagrangian. Substituting into (4.8) we

(8.24)
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get the canonical distribution C annihilated by the following system of linearly independent
constraint 1-forms ¢%, a = 1 and ¢p*, @ = 1, 2:

2
(1) +y3 +y +y3)dx' + (3y3 +y333 +3iys) d> —dyt, @’ +0', o (8.25)
The explicit expression of functions Zﬁ, 1 <a<k, 1< j<n,definedin (5.5),is
- 2 - - -
Ly = () +y +n+x, L} = Y3y +y3yi + 13, Li=o, L =0,
(8.26)

andof L, 1 <o <k —k, 1 < j < n, defined in (5.5) is
2=0. L=y, L3=y. Li=y. Li=y. Li=y; Li=y;.
(8.27)

Using relations (5.9) we obtain for Y1 <a < k,1 <r < m—«k, that the only non-zero

function is the following one, "

Cii = -1, (8.28)
and for Cf‘ij , 1 <a<<k—k 1 <r<m— k, the only non-zero functions are

ol =1, iy =—1, el =1, cl4 = 1. (8.29)

The matrix (Ei{) in (5.16) representing the constrained system takes the form

1 0 0 0 10000000
N 0 -1 0 0 01000000
B=o o -1 0o 0010000 0| (8.30)
0 0 0 -1 000T100O0 0

and one can see that the problem is now regular since the regularity condition (6.5) is satisfied,
i.e.,

rank(ﬁiﬂ) = 4 = max. (8.31)
With the help of (5.24) we get one constrained Euler—Lagrange equation
Vit = Yit ¥ = Vi + Vi3 = Y3+ Vis — Yia = 0. (8.32)

Due to the regularity of the constrained system we have on Q the constraint Legendre
transformation

(Y vy v v E ) = (Y%L PL PR PP YY), (8.33)

where constraint momenta Pri, 1 <r <m — « (7.10) take the form

P! =yl — i, Pl =y} —y3. P} =y} —y3, Pl =y} —yi. (8.34)

For the inverse transformation we have

(x'. %, Pl PE P PE Y YY) = (x5 07 v va y3. vae 980 Y7). (8.35)
where
=Py, wm=Pi4y, =P+, yi=Plyg (8.36)

Now, using (7.6) we can compute the family of energy 1-forms expressed in constraint
Legendre coordinates,

n=n; Adx/ = (P +)7)dP] = (P +3) dP} — (P} +y3) AP} — (P! +yj) dP{ mod Z,
(8.37)
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and the constrained Hamilton equations in the canonical form become

apl  apP? apr} oP}

—t — +—+ — =0,
ax!  9xZ  9x3  ox*
ay! ay!
@=P11+Y129 ﬁ=P12+y§, (8.38)
8y1 ay'
Q=Pf+y327 9=P14+y3-
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